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Abstract

We consider the role of the adjoint equation in determining explicit integrating
factors and first integrals of nonlinear ODEs. In Chandrasekar et al (2006
J. Math. Phys. 47 023508), the authors have used an extended version of the
Prelle–Singer method for a class of nonlinear ODEs of the oscillator type.
In particular, we show that their method actually involves finding a solution
of the adjoint symmetry equation. Next, we consider a coupled second-order
nonlinear ODE system and derive the corresponding coupled adjoint equations.
We illustrate how the coupled adjoint equations can be solved to arrive at a first
integral.

PACS numbers: 02.40.Yy, 02.30.Hq
Mathematics Subject Classification: 58F05, 70H35

1. Introduction

The study of nonlinear ordinary differential equations (ODEs) has been an ongoing endeavor
for well over two centuries now, with significant contributions from many of the greatest
mathematicians of all times such as Euler, Lie, Painlevé, Poincaré to mention just a few. Their
contributions have ranged from finding explicit solutions of ODEs, to developing general
methods of classifications, to a qualitative analysis of their solutions etc. These in turn have
often led to the opening up of entirely new branches of study in algebra, topology, geometry
and have shed new light on several physical phenomena.

Over the years many techniques have been developed to obtain exact solutions of various
kinds of ODEs. However, there does not exist any single common method for obtaining their
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solutions. Nevertheless, the apparently different techniques share one common feature: they
somehow tend to exploit the symmetries of ODEs. Consequently, symmetry analysis of ODEs
has become one of the most powerful tools for analyzing them.The foundations of this method
are contained in the works of Sophus Lie [1, 2].

It is also well known that the existence of a sufficient number of first integrals greatly
simplifies the process of solving any ODE. Having said this, it is not always quite obvious what
these first integrals are. Indeed, their determination is, in general, a non-trivial task. In the case
of conservative mechanical systems, one often has just a single first integral—the energy. In
this context, the semi-algorithmic procedure developed by Prelle and Singer deserves mention
[4]. In its original version it applied to first-order ODEs involving rational functions with
coefficients belonging to the field of complex numbers C. Subsequently their method, which
involved the use of Darboux polynomials, was extended by Singer to include Liouvillian first
integrals [14], by Duarte et al [5, 6] and also by Man and MacCullum [13]. Chandrasekhar
et al have also extended the analysis in a series of papers [7–9].

Even though systematic techniques for solving nonlinear ODEs can be traced to the
seminal works of Lie, certain aspects of the subject appear to have lain dormant for over a
century. Notable among these is the notion of their linearization. Of late it has received renewed
attention and notable progress has been made in this regard. In fact, Chandrasekar et al have
recently proposed an extended Prelle–Singer method, based on generalized transformations,
to linearize a class of equations that cannot be linearized by invertible point transformations
[7].

In this paper we show how the extended Prelle–Singer method as proposed by
Chandrasekar et al may be incorporated into the existing adjoint symmetry equation method.
Essentially, as their method deals with a pair of first-order equations, in the variables R and
S (to be called the RS-pair), these can be combined to obtain the corresponding second-order
adjoint symmetry equation.

It is natural to enquire if similar analogs/correspondences may be identified between
the adjoint equation method and the RS-pair method for coupled second-order systems. The
answer is affirmative. In fact, by using a coupled version of the adjoint symmetry equation,
we derive the first integral for a relatively new system [12], which has appeared in connection
with stellar dynamics.

This paper is organized as follows. In section 2 we recall certain standard results
concerning the solution of ODEs by using first integrals, and introduce the linearized symmetry
equation, for determining the Lie point symmetry generators. Section 3 reviews the extended
Prelle–Singer method as outlined in [8, 9] and contains a derivation of the adjoint symmetry
equation, based on this approach. We illustrate the relative advantages of these methods with
a few simple examples. Section 4 is dedicated to coupled second-order ODEs.

2. Preliminaries

Consider an nth-order ODE in the normal form

y(n) = w(x, y, y ′, . . . , y(n−1)), where y(k) = dky

dxk
. (2.1)

Corresponding to this ODE, there exists an equivalent first-order partial differential equation
(PDE) in (n + 1) variables [3, 10, 11],

D̃f = (∂x + y ′∂y + y ′′∂y ′ + · · · + w∂y(n−1) )f = 0, (2.2)

in which the quantities y ′, y ′′. . . are treated as independent variables at par with x, y.
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Their equivalence is provided by the first integrals of (2.1). By definition a first integral is
a global function I = I (x, y, y ′, . . . , y(n−1)) that is constant along the solutions of (2.1), i.e.,

dI

dx
= D̃I = Ix + y ′Iy + y ′′Iy ′ + · · · + wIy(n−1) = 0. (2.3)

Having determined a first integral, say I = I (x, y, y ′, . . . , y(n−1)) = I0, one can invert it to
obtain

y(n−1) = w1(x, y, y ′, . . . , y(n−2); I0)

provided Iy(n−1) �= 0. This shows that the existence of a first integral allows for the reduction
in the order of the differential equation by 1. Furthermore, it is evident that every first integral
is a solution of the linear PDE (2.2) and conversely.

Let us assume φα (α = 1, . . . , n) denote a set of n functionally independent solutions of
(2.1)/(2.2). Since each φα is a first integral, one has

φα(x, y, y ′, . . . , y(n−1)) = Iα
0 , α = 1, 2, . . . , n. (2.4)

Consequently, by eliminating all derivatives from (2.4) one arrives at the general solution of
(2.1) in the form

y = y
(
x; I 1

0 , . . . , I n
0

)
,

the Iα
0 ’s being essentially constants of integration.
As mentioned earlier, the determination of even a single first integral is in most cases a

non-trivial task; hence while in principle the above procedure is fine, its practical application
is often a daunting task, to say the least.

It is also well known that symmetries play a crucial role in the solutions of differential
equations. In fact much of the existing literature on symmetries of ODEs is restricted to what
are known as Lie point symmetries. The differential equation (2.1)/(2.2) is said to admit a
Lie point symmetry with generator

X = ξ(x, y)∂x + η(x, y)∂y + η(1)∂y ′ + · · · + η(k)∂y(k) , where η(i) = dη(i−1)

dx
− y(i) dξ

dx
,

if

[X, D̃] = gD̃ (2.5)

holds. Here, g = g(x, y, y ′, . . . , y(n−1)) is some function and η(i)’s denote the prolongations
of the vector field (infinitesimal generators) X(0) = ξ(x, y)∂x + η(x, y)∂y . For an nth-order
ODE (2.1) the infinitesimal symmetry generators, when they exist, are determined from the
linearized symmetry condition,

η(n) = ξwx + ηwy + η(1)wy ′ + · · · + η(n−1)wy(n−1) , (2.6)

when (2.1) holds [11]. In terms of the characteristic, Q := η − y ′ξ , this condition may be
written as

D̃nQ − wy(n−1) D̃(n−1)Q − · · · − wy ′D̃Q − wyQ = 0. (2.7)

For example when y ′′ = w(x, y, y ′), the linearized symmetry condition is a second-order
linear PDE

D̃2Q − wy ′D̃Q − wyQ = 0 (2.8)

with vector field

D̃ = ∂x + y ′∂y + w(x, y, y ′)∂y ′ .
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3. Adjoint symmetries and integrating factors

The following equation is known as the adjoint of the linearized symmetry condition (2.7),
and its solutions are usually called the adjoint symmetries

D̃n� + D̃n−1(wy(n−1)�) − D̃n−2(wy(n−2)�) + · · · + (−1)n−1wy� = 0. (3.1)

It must be stressed however that these solutions are neither symmetries nor generators of
symmetries, and it is more appropriate to call a solution a cocharacteristic [11]. A systematic
procedure for finding the solutions of (3.1) is to use an ansatz for �, for example, to assume
that they are independent of y(n−1) or to even assume a suitable rational structure.

3.1. Review of the extended Prelle–Singer method

Let us consider once again the equation

y(n) = w(x, y, y ′, . . . , y(n−1)), (3.2)

together with the base one-forms dx, (dy − y ′ dx), . . . , (dy(n−1) − wdx). The null form
obtained by multiplying all but the first one-form by functions Si(x, y, y ′, . . . , y(n−1)) where
i = 0, . . . , n − 1 and demanding that after addition the resultant one-form be exact is

−(S0y
′ + S1y

′′ + · · · + Sn−2y
(n−1) + Sn−1w) dx

+ (S0 dy + S1 dy ′ + · · · + Sn−2 dy(n−2) + Sn−1 dy(n−1))

= dI (x, y, y ′, . . . , y(n−1)) = 0. (3.3)

This implies

Ix = −(S0y
′ + S1y

′′ + · · · + Sn−2y
(n−2) + wSn−1) (3.4)

Iy = S0, Iy ′ = S1, . . . , Iy(n−1) = Sn−1. (3.5)

Clearly I is a first integral of the equation (3.2), provided it satisfies the integrability
criteria

Ixy(j) = Iy(j)x, j = 0, . . . , n − 1, (3.6)

Iy(j)y(k) = Iy(k)y(j) , 0 � j < k � n − 1. (3.7)

The vector field associated with (3.2) is

D̃ = ∂

∂x
+ y ′ ∂

∂y
+ · · · + w

∂

∂y(n−1)
, (3.8)

in terms of which the integrability conditions (3.6) may be expressed as follows:

−D̃[Sn−1] = (wy(n−1)Sn−1 + Sn−2) (3.9)

−D̃[Sn−2] = (wy(n−2)Sn−1 + Sn−3) (3.10)

...

−D̃[S2] = (wy ′Sn−1 + S0) (3.11)

−D̃[S0] = wySn−1. (3.12)
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The remaining integrability conditions (3.7) are all satisfied if

∂Sn−1

∂y(j)
= ∂Sj

∂y(n−1)
, 0 � j � n − 2. (3.13)

Our primary interest is to know Sn−1, since the remaining ones can be determined algebraically
from (3.9)–(3.12) in a recursive manner. Eliminating the Si’s by successively applying the
vector field D̃ to (3.9) and using the remaining ones, we obtain finally

D̃n[Sn−1] + D̃n−1[wy(n−1)Sn−1] − D̃n−2[wy(n−2)Sn−1] + · · · + (−1)n−1wySn−1 = 0. (3.14)

But this is precisely the adjoint equation corresponding to the linearized symmetry
equation (3.1), [11]. Thus the integrating factors of (2.1) are just the solutions of (3.14),
which fulfil the integrability criteria stated in (3.13). Consequently, determination of the
integrating factor Sn−1 of (3.2) is basically equivalent to finding a solution of this equation.
(The connection with the notation used in [9] is established by the following substitutions:
Sj −→ RSj+1,∀j = 0, . . . , n − 3 and Sn−1 −→ R.). The usual procedure to tackle such
PDEs is to make an ansatz for Sn−1, for example assuming it to be a polynomial in y(n−1) of
some suitable degree, and then obtaining its coefficients in a recursive manner. In their works,
Chandrasekar et al have made a very interesting ansatz, in which they assumed a rational form
for Sn−1. As a consequence, instead of solving the adjoint equation directly, they solved the set
(3.9)–(3.12) of first-order equations by making appropriate ansätze for the Si’s. Suppose �i

be the solution(s) of the adjoint equation. Setting Sn−1 = �i one can calculate the remaining
Sj ’s in a recursive manner and check if (3.13) holds. In the event such an integrating factor
exists and satisfies the integrability condition, its associated first integral may be obtained from
the relation

I i =
∫

Si
0(dy − y ′ dx) + Si

1(dy ′ − y ′′ dx) + · · · Si
n−1(dy(n−1) − w dx). (3.15)

Essentially, therefore, one can choose to either solve the adjoint equation directly and
obtain Sn−1 through some suitable ansätze or make suitable ansätze for the Sk’s and solve
a set of n first-order PDEs. In general the former involves solving a single higher order
equation, while the latter involves solving a system of first-order linear PDEs. It appears from
the works [7–9] that the latter is much easier to implement, as far as practical computations
are concerned. In the following, we illustrate these points with examples of second-order
equations.

3.2. Some illustrative examples

Example 1. y ′′ = w(x, y, y ′) = 3y ′2
y

+ y ′
x
.

Here the system of coupled first-order PDEs for the unknown functions S0, S1 is:

D̃S1 = −(wy ′S1 + S0) (3.16)

D̃S0 = −wyS1, (3.17)

where D̃ = ∂x + y ′∂y + w∂y ′ ; the integrability condition is simply

S1y = S0y ′ . (3.18)

The adjoint equation is

D̃2S1 + D̃(wy ′S1) − wyS1 = 0. (3.19)

5
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Assuming � = S1 to be a solution of (3.19) independent of y ′, we have upon equating the
coefficients of different powers of y ′ the following set of equations:

15� + 9y�y + y2�yy = 0

3� + 3x�x + y�y + xy�xy = 0

−� + x�x + x2�xx = 0.

Their structure suggests an ansatz of the form � = xαyβ . One can verify that this leads to
three solutions, namely,

�1(x, y) = x

y3
, �2(x, y) = 1

xy3
and �3(x, y) = 1

xy5
.

However, only �1 and �2 are acceptable, as the other does not satisfy the integrability criterion.
The results are summarized below along with the respective first integrals:

(i) �1 = S1
1 = x

y3
, S1

0 = − x

y3

(
2

x
+

3y ′

y

)
, with I 1(x, y, y ′) = xy ′ + y

y3

(ii) �2 = S2
1 = 1

xy3
, S2

0 = − 3y ′

xy4
, with I 2(x, y, y ′) = y ′

xy3
.

The first integral I 2 was obtained by Duarte et al in [5]. But for some reason the other one
was not mentioned.

Example 2. In this example we study the equation

y ′′ = w(x, y, y ′) = −(kyy ′ + λy),

where k, λ are constants, which represents a damped harmonic oscillator. As before one has
to solve the adjoint symmetry equation (3.1) for n = 2, namely,

(wxy ′ + y ′wyy ′ + wwy ′y ′ − wy)� + wy ′�x + (w + y ′wy ′)�y + (wx + 2wwy ′ + y ′wy)�y ′

+ �xx + 2y ′�xy + y ′2�yy + 2w�xy ′ + 2wy ′�yy ′ + w2�y ′y ′ = 0.

Solving this PDE is a rather daunting task even when w(x, y, y ′) is fairly simple. It is therefore
natural to make certain simplifying assumptions regarding the functional dependence of �.
For instance one can begin by assuming � to be independent of a particular variable, say x,
and see if that leads to a more manageable form of the adjoint equation. Alternatively, one
may at the very outset assume that � depends on any one of the three variables x, y or y ′.
The choice of procedure to be adopted is one of sheer convenience. We illustrate this by first
making the simplifying assumption �x = 0, which leads to

(wxy ′ + y ′wyy ′ + wwy ′y ′ − wy)� + (w + y ′wy ′)�y + (wx + 2wwy ′ + y ′wy)�y ′

+ y ′2�yy + 2wy ′�yy ′ + w2�y ′y ′ = 0.

This is a linear parabolic PDE. Since w = −(kyy ′ + λy) we have

wx = wy ′y ′ = 0, wy ′ = −ky, wy = −(ky ′ + λ) and wyy ′ = −k.

As solving this PDE is still rather formidable, let us further assume �y = 0. In other words
� is just a function of y ′ and our equation simplifies further to

(wxy ′ + y ′wyy ′ + wwy ′y ′ − wy)� + (wx + 2wwy ′ + y ′wy ′)�y ′ + w2�y ′y ′ = 0.

Plugging in the expressions for partial derivatives of w and equating the coefficients of different
powers of y then leads to the following set of equations:

(ky ′ + λ)y ′�y ′ = λ�

2k�y ′ + (ky ′ + λ)�y ′y ′ = 0.

6



J. Phys. A: Math. Theor. 42 (2009) 115206 P Guha et al

These equations admit the particular solution �1(y ′) = y ′
(ky ′+λ)

and one finds with S1
1 =

�1 = y ′
(ky ′+λ)

that S1
0 = y. The integrability condition S1

1y = S1
0y ′ is trivially satisfied and the

corresponding first integral is

I 1(x, y, y ′) = y ′ +
1

2
ky2 − λ

k
log(ky ′ + λ).

Note that this first integral is independent of x by construction. For such first integrals, the
method devised by Chandrasekar et al allows us to determine the form of S0 a priori. We
dwell on this aspect in the following section.

3.3. First integrals independent of a particular coordinate

In this subsection, we shall discuss the issue of first integrals independent of a particular
coordinate. This usually leads to a reduction of the order of the equation, as will be explained
below. The general ideas contained here will be illustrated with a specific example of a generic
second-order ODE of the Liénard type.

An interesting feature occurs when the first integral is independent of a particular variable,
say x, i.e., Ix = 0. Then, in general, (3.4) implies

S0 = − 1

y ′ (y
′′S1 + · · · + Sn−2y

(n−1) + Sn−1w),

which enables us to eliminate S0, and causes a reduction in the order of the equations for
determining the integrating factor. For instance in the case of a second-order ODE, we have
S0y

′ + wS1 = 0, leading to S0 = −w
y ′ S1. As a result, one is left with a first-order PDE for

determining S1, namely,

D̃(S1) = −
(

wy ′ − w

y

)
S1. (3.20)

On the other hand, for a third-order equation, we have

S0 = −y ′′S1 + wS2

y ′ .

Elimination of S0 from the system of equations (3.9)–(3.12) with n = 3 then requires us to
solve for S1 and S2 from the coupled system:

D̃[S2] = −(wy ′′S2 + S1)

D̃[S1] = −
((

wy ′ − w

y ′

)
S2 − y ′′

y ′ S1

)
.

This in turn leads to the following second-order equation for the integrating factor S2:

D̃2S2 + D̃(wy ′′S2) − y ′′

y ′ D̃S2 −
{(

wy ′ − w

y ′

)
+

y ′′

y ′ wy ′′

}
S2 = 0. (3.21)

Thus the absence of one ‘coordinate’ in a first integral causes only marginal simplification,
namely a reduction, by one, in the order of the equation to be solved for the integrating factor.
Nevertheless this is extremely useful for second-order equations y ′′ = w(x, y, y ′), since one
is then required to solve a single first-order linear PDE for the integrating factor S1. This fact
was exploited in [7, 8]. Although in general for n � 3, the existence of an x independent first
integral may not always lead to a substantial reduction of computational labor; nevertheless
it is instructive to look into the RS method more carefully, as it has proved to be immensely

7
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successful in determining first integrals of many highly nonlinear oscillator-type systems.
Generally, for equations of the generic form y ′′ = −f1(y)y ′ − f0(y), (3.20) reduces to

D̃S1 = −f0(y)

y ′ S1.

The solution S1
1 of example 2 suggests the ansatz S1 = y ′

h(y,y ′) with the consequence

D̃S1 = D̃(y ′)
h

− y ′

h
D̃h = −f0(y)

h
.

Therefore, the problem now reduces to a determination of the function h(y, y ′) from the
following relation (since D̃(y ′) = w):

y ′D̃(h) = (w + f0)h = −f1(y)y ′h

D̃(h) = −f1(y)h.
(3.22)

The resulting PDE for h is explicitly given by

y ′hy + (−f1y
′ − f0)hy ′ = −f1y

′h.

For f1 = ky and f0 = λy, assuming furthermore that h is independent of y, we obtain
h(y ′) = C(ky ′ + λ). Thus once again we get the solutions, setting constant C = 1,

S1 = y ′

(ky ′ + λ)
and S0 = y,

which satisfy the integrability criterion.
As pointed out in [9], it is often more convenient to modify the ansatz for S1 to S1 = y ′

h(y,y ′)r
to handle more complicated situations.

For generic equations of the form (Liénard type)

y ′′ = −f1(y)y ′ − f0(y)

with this ansatz for S1, (3.22) is modified to

rD̃(h) = −f1(y)h. (3.23)

Assuming h(y, y ′) = A(y) + B(y)y ′ + C(y)y ′2, substitution into (3.23) leads to the following
set of equations for determining the unknown functions A,B,C upon equating coefficients of
different powers of y ′:

Cy = 0, rBy = (2rf0 − f1)C, rAy = (rf0 − f1)B − 2rCf1 and rf0B = f1A.

(3.24)

Suppose

f0(y) = λyξ and f1(y) = μyη,

where λ,μ are parameters and ξ, η are constants. We obtain the following solutions for C,B

and A:

C(y) = γ, rB(y) = μγ
(2r − 1)

η + 1
yη+1 + β

rA(y) = 2λrγ

ξ + 1
yξ+1 + μ(r − 1)

[
(2r − 1)μγ

2r(η + 1)2
y2(η+1) +

β

r(η + 1)
yη+1

]
+ α.

Here α, β and γ are constants of integration. From the last condition in (3.24), i.e., rf 0B =
f1A, it follows, assuming ξ �= η, that α = β = 0 and leads to the following relation:

λr

[
(2r − 1)

(η + 1)
− 2

(ξ + 1)

]
yξ+η+1 = μ2(r − 1)(2r − 1)

2r(η + 1)2
y3η+2. (3.25)

One can then identify two possible cases.

8
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(a) When r = 1 we have ξ = 2η + 1 and A(y) = λγ

(η+1)
y2(η+1) and B(y) = μγ

(η+1)
y(η+1). The

corresponding integrating factor is

Sa
1 = y ′[

λγ

(η+1)
y2(η+1) + μγ

(η+1)
y(η+1)y ′ + γy ′2] and Sa

0 = μyηy ′ + λy2η+1

y ′ S1.

(b) For r �= 1, assuming the exponents of y in (3.25) to be equal, we find once again
ξ = 2η + 1. Upon equating their coefficients, we obtain a quadratic equation for
the exponent r, occurring in the denominator of the integrating factor, with solution
r = μ2

4λ(η+1)

[
1 ±

√
1 − 4λ

μ2 (η + 1)
]
. Therefore, in this case Sb

1 = y ′
hr where

h(y, y ′) = γ

(η + 1)

[
λ + μ2 (r − 1)(2r − 1)

2r2(η + 1)

]
y2(η+1) +

γμ(2r − 1)

r(η + 1)
yη+1y ′ + γy ′2.

4. Coupled second-order equations

In this section, we consider a system of second-order ODEs to illustrate an application of the
coupled version of the adjoint equation.

Let us consider the system of coupled second-order equations:

ẍ = φ1(x, y) and ÿ = φ2(x, y). (4.1)

As before, consider the following base one forms (dx − ẋ dt), (dy − ẏ dt), (dẋ − φ1 dt),

(dẏ − φ2 dt). Let S1, S2 and R1, R2 be functions such that

S1(dx − ẋ dt) + S2(dy − ẏ dt) + R1(dẋ − φ1 dt) + R2(dẏ − φ2 dt) = dI (t, x, y, ẋ, ẏ) = 0.

(4.2)

Hence

It = −(S1ẋ + S2ẏ + R1φ1 + R2φ2) (4.3)

Ix = S1, Iy = S2, Iẋ = R1, Iẏ = R2. (4.4)

The functions R1, R2 are the integrating factors. Compatibility of the set of (4.3) and (4.4),
namely,

Itx = Ixt , Ity = Iyt , Itẋ = Iẋt , Itẏ = Iẏt

Ixy = Iyx, Ixẋ = Iẋx, Ixẏ = Iẏx, Iyẋ = Iẋy, Iyẏ = Iẏy,
(4.5)

requires that the following hold:

D[R1] = −(S1 + R1φ1ẋ + R2φ2ẋ ) (4.6)

D[R2] = −(S2 + R1φ1ẏ + R2φ2ẏ ) (4.7)

D[S1] = −(R1φ1x + R2φ2x) (4.8)

D[S2] = −(R1φ1y + R2φ2y), (4.9)

where D = ∂t + ẋ∂x + ẏ∂y + φ1∂ẋ + φ2∂ẏ . It is evident that once R1, R2 are known the
remaining S1, S2 can be determined algebraically from (4.6) and (4.7). Since our basic aim
is to determine the integrating factors, we can eliminate, say, S1 by differentiating (4.6) and
using (4.8) to obtain

D2[R1] + D[R1φ1ẋ + R2φ2ẋ] − (R1φ1x + R2φ2x) = 0. (4.10)

9
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Similarly eliminating S2 yields

D2[R2] + D[R1φ1ẏ + R2φ2ẏ] − (R1φ1y + R2φ2y) = 0. (4.11)

Equations (4.10)–(4.11) constitute the coupled version of the adjoint equation (3.1) when
n = 2.

One needs to check, of course, that the solutions of the coupled adjoint equations indeed
satisfy the compatibility conditions (4.5). In general one employs an ansatz for R1, R2 in
order to solve the system of PDEs (4.10)–(4.11). From a knowledge of R1, R2 and S1, S2 it is
straightforward to obtain the first integral from

I =
∫

S1(dx − ẋ dt) + S2(dy − ẏ dt) + R1(dẋ − φ1 dt) + R2(dẏ − φ2 dt). (4.12)

Example 3. Consider the following system of second-order equations:

ẍ +
α

x2
g(u) − λ

x3
= 0

ÿ +
β

x2
f (u) − μ

y3
= 0, u = y

x
.

(4.13)

Here α, β, λ and μ are parameters and f and g are arbitrary functions. Writing these equations
in the form ẍ = φ1(x, y) and ÿ = φ2(x, y), we identify

φ1(x, y) = − α

x2
g(u) +

λ

x3
and φ2(x, y) = − β

x2
f (u) +

μ

y3
.

Note here φ1 and φ2 are velocity independent and for a time-independent first integral It = 0,
we may take D = ẋ∂x + ẏ∂y + φ1∂ẋ + φ2∂ẏ . In that event, with the following ansatz for R1 and
R2, namely,

R1 = a1(x, y)ẋ + a2(x, y)ẏ and R2 = b1(x, y)ẋ + b2(x, y)ẏ, (4.14)

(4.10) and (4.11) yield the following equations:

ẋ3a1xx + ẋ2ẏ(a2xx + 2a1xy) + ẋẏ2(2a2xy + a1yy) + a2yy ẏ
3

+ ẋ{(φ1a1 + φ2a2)x + 2a1xφ1 + (a2x + a1y)φ2}
+ ẏ{(φ1a1 + φ2a2)y + 2a2yφ2 + (a2x + a1y)φ1}

= ẋ(φ1xa1 + φ2xb1) + ẏ(φ1xa2 + φ2xb2), (4.15)

ẋ3b1xx + ẋ2ẏ(b2xx + 2b1xy) + ẋẏ2(2b2xy + b1yy) + b2yy ẏ
3

+ ẋ{(φ1b1 + φ2b2)x + 2b1xφ1 + (b2x + b1y)φ2}
+ ẏ{(φ1b1 + φ2b2)y + 2b2yφ2 + (b2x + b1y)φ1}

= ẋ(φ1ya1 + φ2yb1) + ẏ(φ1ya2 + φ2yb2). (4.16)

Equating coefficients of different powers of the velocities we obtain the following system of
equations:

a1xx = 0, a2xx + 2a1xy = 0, a1yy + 2a2xy = 0, a2yy = 0, (4.17)

(φ1a1 + φ2a2)x + 2a1xφ1 + (a2x + a1y)φ2 = (φ1xa1 + φ2xb1), (4.18)

(φ1a1 + φ2a2)y + 2a2yφ2 + (a2x + a1y)φ1 = (φ1xa2 + φ2xb2) (4.19)

10
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b1xx = 0, b2xx + 2b1xy = 0, b1yy + 2b2xy = 0, a2yy = 0, (4.20)

(φ1b1 + φ2b2)x + 2b1xφ1 + (b2x + b1y)φ2 = (φ1ya1 + φ2yb1), (4.21)

(φ1b1 + φ2b2)y + 2b2yφ2 + (b2x + b1y)φ1 = (φ1ya2 + φ2yb2). (4.22)

Observe that the choice ak = constant and bk = constant (k = 1, 2) satisfies (4.17) and
(4.20), while the remaining equations then simplify to

φ2x(b1 − a2) = 0, φ1y(a2 − b1) = 0

(φ1x − φ2y)a2 − φ1ya1 + φ2xb2 = 0

φ1ya1 + (φ2y − φ1x)b1 − φ2xb2 = 0.

The first two equations imply a2 = b1, which renders the second and the third equations
identical, namely,

(φ1x − φ2y)a2 − φ1ya1 + φ2xb2 = 0.

If equations (4.13) are derivable from a potential then it is necessary that φ1y = φ2x . With this
in mind the above equation can be satisfied by making the choice a2 = b1 = 0 whilst a1 and
b2 are arbitrary. Therefore, the choice a1 = b2 = 1 and a1 = b1 = 0 leads to the following
solution:

R1 = ẋ R2 = ẏ. (4.23)

In this case the solutions of S1 and S2 from (4.6) and (4.7) are found to be

S1 = −φ1 = α

x2
g(u) − λ

x3

S2 = −φ2 = β

x2
f (u) − μ

y3
, u = y

x
.

Using the above values of Ri and Si (i = 1, 2) we obtain from (4.12) the first integral as

I (x, y, ẋ, ẏ) = 1

2
(ẋ2 + ẏ2) +

λ

2x2
+

μ

2y2
+ N(x, y),

where

N(x, y) =
∫

α

x2
g(u) dx +

∫
β

x2
f (u) dy.

On the other hand the condition φ1y = φ2x translates to

αg′(u) + 2βf (u) + βuf ′(u) = 0. (4.24)

Using this condition N(x, y) may be evaluated and we find that

N(x, y) = −β

x

(
α

β
g(u) + uf (u)

)
.

Hence a first integral for the system of second-order equations is

I (x, y, ẋ, ẏ) = 1

2
(ẋ2 + ẏ2) +

λ

2x2
+

μ

2y2
− β

x

(
α

β
g(u) + uf (u)

)
. (4.25)

Let us now look for another solution set of the coupled adjoint equations for R1 and R2.
It is easily verified that

a1(x, y) = y2, a2(x, y) = −xy = b1(x, y) and b2(x, y) = x2 (4.26)

11
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satisfy (4.17) and (4.20) while (4.18) and (4.22) are identically satisfied. The remaining
equations (4.19) and (4.21) become identical and reduce to the following equation:

3(yφ1 − xφ2) = (φ2y − φ1x)xy − φ1yy
2 + φ2xx

2. (4.27)

Substituting the values of φi (i = 1, 2) and their derivatives leads to the following condition
on the functions f and g, namely:

αug(u) − βf (u) = 0, u = y

x
. (4.28)

From (4.26) we derive the following solution for Ri (i = 1, 2):

R1 = −y(xẏ − yẋ) and R2 = x(xẏ − yẋ). (4.29)

The corresponding values of Si (i = 1, 2) are now

S1 = (xẏ − yẋ)ẏ − λ
y2

x3
+ μ

x

y2
and S2 = −(xẏ − yẋ)ẋ + λ

y

x3
− μ

x2

y3
, (4.30)

where use has been made of the condition (4.28). Hence from (4.12) we obtain another first
integral given by

I (x, y, ẋ, ẏ) = 1

2
(yẋ − xẏ)2 +

λ

2

(y

x

)2
+

μ

2

(
x

y

)2

. (4.31)

The two first integrals given by (4.25) and (4.31) will be valid simultaneously provided we can
find functions f and g which satisfy (4.24) and (4.28). It is easily verified that these require
the functions f and g to be given by

g(u) = 1

(1 + u2)3/2
and f (u) = α

β

u

(1 + u2)3/2
,

respectively. Under the circumstances the system of second-order equations reduces to the
following well-known system

ẍ +
αx

(x2 + y2)3/2
− λ

x3
= 0 ÿ +

αy

(x2 + y2)3/2
− μ

y3
= 0,

with the first integrals

I1 = 1

2
(ẋ2 + ẏ2) +

λ

2x2
+

μ

2y2
− α√

x2 + y2

I2 = 1

2
(yẋ − xẏ)2 +

λ

2

(y

x

)2
+

μ

2

(
x

y

)2

.

A more interesting situation from the physical point of view arises when the functions f and g

satisfy condition (4.24) but not condition (4.28). In that event the system of equations (4.13)
admits just one first integral given by (4.25), with f and g satisfying (4.24). In [12] the authors
obtained a system of equations similar in structure to (4.13), in the context of the dynamics of
stellar systems, with

f (u) = 2(1 − ug(u)).

Condition (4.24) then leads to the following differential equation determining g(u):

(1 − 2u2)g′(u) = 2(3ug(u) − 2)

and the first integral assumes the form (setting all the parameters equal to unity)

I (x, y, ẋ, ẏ) = 1

2
(yẋ − xẏ)2 +

1

2x2
+

1

2y2
− 1

x
(2u + (1 − 2u2)g(u)), u = y

x
.

In fact this first integral serves as the Hamiltonian.
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5. Outlook

In this paper we have studied the RS-pair method, for determination of first integrals of ODEs,
as proposed by Chandrasekar et al and have shown how their procedure may be brought
within the general ambit of the adjoint equation method. In a similar spirit we have derived
the coupled adjoint equations for analysis of coupled systems of second-order ODEs. Its use
has been illustrated for a system occurring in the context of stellar dynamics. It is obvious
that the procedure can easily be extended to systems of higher order equations. Lastly, it
may be mentioned that one can apply this method to the equations of the Painlevé–Gambier
classification and that this is currently being pursued.

Acknowledgment

The authors wish to thank the referees for their detailed comments. They wish to thank Pepin
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